本文就其临床研究进行了综述,包括眼科、神经学、心脏、血液学、软骨和代谢性疾病。温故而知新,以期让大家更加了解诱导多能干细胞疗法的在日本的发展。
-01-
年龄相关性黄斑变性:RPE细胞在我们的眼睛中,存在着一种视网膜色素上皮细胞,而在年龄相关性黄斑变性(Age-relatedmaculardegeneration,AMD)中,视网膜色素上皮细胞将逐渐丧失功能,并导致黄斑中的光感受器死亡,影响视力甚至最终形成失明。如果早期发现疾病,可以通过抗血管内皮生长因子(anti-VEGF)药物治疗。日本理化所MasayoTakahashi(也就是高桥政黛)研究组正在研究移植湿性AMD患者iPSC分化的视网膜色素上皮(iPS-RPE)细胞薄片的可行性。采集两例AMD晚期患者的皮肤成纤维细胞,制备成iPS-RPE细胞。在这两例患者中,其中1例患者接受了自体iPS-RPE细胞薄片移植手术。术后1年,移植的RPE细胞薄片证实移植成功,视力得到维持。随后的临床研究,同样是这个研究团队,将从HLA-homoiPS细胞库中制备的RPE细胞移植到与HLA匹配的湿性AMD患者中。局部使用类固醇,没有使用免疫抑制剂。在全部5例接受移植的病例中,经过1年的观察期,证实了移植细胞的存活,并且没有异常生长。在临床试验中,观察到的不良事件包括轻度炎症、疑似轻度排斥反应、视网膜水肿、角膜上皮脱离和无菌性眼内炎。中期结果表明,经过1年的随访,HLA匹配的异体iPS-RPE细胞移植是安全的,并且稳定存活。-02-
角膜缘干细胞缺乏症:角膜片
角膜之所以维持透明,它表面的上皮细胞功不可没。我们人类的角膜上皮细胞不断生长,不断更新,而维持这种更新的源泉就是角膜缘干细胞。当角膜缘干细胞缺乏时(即角膜缘干细胞缺乏症,limbalstemcelldeficiency,LSCD),会导致角膜上皮持续性缺损,角膜血管化、角膜溃疡感染、不透明,严重者造成角膜穿孔、甚至危及整个眼球,导致失明。供体角膜移植已被用于治疗可能导致失明的严重角膜上皮疾病,但也存在排斥反应和供体短缺的问题。
日本大阪大学的眼科医师KojiNishida(西田幸二)团队利用iPSC来源的角膜细胞组织层来修复损伤的角膜。研究小组开发了一种二维培养系统“SEAM方法”,通过促进iPS细胞自分化来组织重建所有的眼样结构。这个细胞薄片构成眼睛的主要细胞群(包含角膜上皮、视网膜和晶状体上皮)出现在组织的特定区域。研究小组从二维组织结构中分离出了角膜上皮祖细胞,并成功地产生了功能性的角膜上皮组织。
iPSC治疗角膜缘缺乏症示意图
研究小组通过将人类iPSC制备的角膜上皮组织移植到动物模型中,证明了治疗效果。在年7月至年12月,这个研究小组把用iPSC制作的厚度0.05毫米薄膜状角膜组织,移植给几乎丧失视力的“角膜缘干细胞缺乏症”的4名患者的全球首例临床研究已完成。
此后经过1年的随访观察,未发生排异反应和癌变等问题,确认了安全性。全部患者症状均有改善,其中3人的矫正视力提高,有患者从0.15升至0.7。
-03-
帕金森病:多巴胺神经祖细胞
大多数哺乳动物,大脑在胚胎时期就已经完成大部分,只有一小部分神经在出生后持续发展。神经损伤引起的疾病将导致永久性的残疾,如何利用iPSC来修复神经系统是目前干细胞疗法的热门研究。
人们发现利用iPSC分化的多巴胺能神经元可以治疗帕金森病。帕金森病是大脑黑质区(subatantianigra)分泌多巴胺的神经细胞退化造成的一种疾病。帕金森病仅次于阿尔茨海默病,是第二常见的神经退行性疾病。在美国,男性的终生风险为2%,女性为1.3%。
iPSC治疗帕金森示意图日本京都大学iPS细胞研究所JunTakahashi(高桥淳,也就是高桥政黛的丈夫)研究小组于年8月开展使用iPSC来源的多巴胺神经祖细胞治疗帕金森病的临床试验。临床试验移植的细胞来自HLA-homoiPS细胞库。种子细胞iPSC经过诱导分化,并通过流式细胞仪分选纯化出corin阳性的细胞(corin是多巴胺神经祖细胞的细胞表面标记物)。研究小组将与HLA匹配后的异体iPSC诱导分化为多巴胺神经祖细胞,配合低量免疫抑制剂,通过定位脑手术将大约万个分化的细胞移植到患者大脑纹状体左右两侧皮质部分。
在临床试验之前,先证实了移植的人类iPSC来源的多巴胺神经祖细胞在帕金森病的食蟹猴模型中的有效性和安全性。经过两年的跟踪,没有观察到猴子肿瘤的形成,也没有发现任何恶性转化的证据,确认了安全性。结果显示:移植的猴子运动活动增加,帕金森病症状有所改善。PET分析显示,移植的细胞在大脑中合成了多巴胺。
-04-
脊髓损伤:神经祖细胞
脊髓损伤(Spinalcordinjury),通常指脊髓受到外部影响,造成损伤部位及其以下部分瘫痪或全部瘫痪,使患者终身残疾。脊髓损伤是一种比较常见的外伤。脊髓损伤治疗的难点在于神经传导重建及运动功能的恢复。
日本庆应大学生理学HideyukiOkano(岡野荣之)研究小组于年2月被批准开展使用采用iPSC来源神经祖细胞治疗亚急性期脊髓损伤的临床研究。但由于COVID-19疫情原因,研究被延后至年年底才得以开展。临床试验移植的细胞来自HLA-homoiPS细胞库。临床试验选择的适应症,为亚急性脊髓损伤(C3/4-Th10水平,损伤后14-28天内),共纳入4名受试患者。试验的主要目的是评估hiPSC-NS/PC移植细胞和移植方法的安全性。次要目标是获得其对神经功能和生活质量影响的初步证据。
iPSC治疗脊髓损伤的临床概要
细胞来源:试验使用的细胞来源是异体细胞(iPS种子细胞来自CiRA的再生医疗用iPS细胞库,在神经诱导14天后分化诱导成神经祖细胞,用神经球培养技术进行扩增,最终制作出成品细胞冻存医院进行临床试验)。
细胞处理:在预定的移植手术前4天,细胞将进行解冻复苏,经过培养和洗涤处理后,万个细胞重悬在20μL的人工脑脊液中,保持在4°C环境,直到移植。移植方式:移植中患者接受全麻,通过术前MRI和术中超声辅助,细胞在手术显微镜下通过神经注射器移植到损伤部位的中心。-05-
心力衰竭:心肌薄片
心力衰竭(heartfailure)简称心衰,是由于心脏泵血力量不足导致的一种心脏疾病。缺血性心脏病是由于冠状动脉阻塞引起心肌组织慢性缺血,从而导致功能性心肌细胞坏死,这是心力衰竭的主要病因。然而,成熟的心肌细胞是不能自我更新的,缺血和坏死区域的心肌逐渐被纤维组织所取代。因此,补充功能性心肌细胞是延缓心衰进程的一种合理方法。因为心肌细胞没有增殖能力,难以大量产生。因此,骨骼肌细胞、骨髓单个核细胞和间充质干细胞(MSCs)都是候选细胞,被用于替代心肌细胞,并进行了动物实验和临床试验。
起初,细胞片由自体骨骼肌细胞制造的,可以直接贴到心脏表面。治疗机制主要依靠细胞片旁分泌的营养因子和细胞片细胞与宿主心肌融合。然而,因为是自体个性化移植,缺点很明显:一是患者需要等待时间长,二是制作成本较高。因此,开发一种通用型标准化现货性产品,尤为重要。细胞薄片,便是这样一种产品,通过HLA配型后的iPSC衍生的心肌细胞薄片,可当做通用型产品。
在动物实验中,研究发现人类胚胎干细胞衍生的心肌细胞在组织学上和电生理学上都能与宿主心肌匹配结合,这与以前移植的非心肌细胞不同。在猴子实验,也显示了其生存能力和功能的改善。在猴子心肌梗死模型中,HLA匹配的猴子iPSC来源的心肌细胞即使在移植后12周仍能存活,并产生宿主心脏的功能改善。然而,在所有的猴子中都观察到一些室性心律失常,这表明处理移植前的心律失常的影响是必要的。
在日本,HEARTSHEET?的发明者之一,大阪大学的外科医生YoshikiSawa教授通过iPSC制成心肌细胞薄片,用于治疗猪的心力衰竭。研究小组研究了心脏功能改善的机制,包括分析了iPSC来源的心肌细胞的旁分泌因子。研究小组通过HLA-homoiPS细胞成功制备了大量高度安全的心肌细胞薄片,可以用于人体移植。目前,研究小组正在进行一项临床试验,以验证心肌细胞薄片治疗心力衰竭的安全性和有效性(jRCT)。临床适应症是缺血性心脏病,招募10个病人。
-06-
血小板减少症:血小板
在日本,每年临床需要超过万升血小板,主要献血者捐赠。尴尬的是,血小板在采血后只能保存4天。由于新生儿出生率下降和人口老龄化,献血者群体的数量正在减少,但需要血小板的老年人群体数量正在增加。未来,不仅是血小板制剂,而且输血制剂也可能出现供应不足的情况。
通常,再生障碍性贫血(即“再障”)或其他疾病造成的严重血小板减少,需要进行血小板输血。然而,输血可能会引起血小板输血顽固可能发生,即输血后血液中的血小板不会升高。其主要原因是外来的血小板被患者自身免疫细胞破坏。在这种情况下,血小板不能通过异基因血小板输血来补充。如果血小板是由自体细胞制造的,输血就不会发生免疫反应。
日本京都大学iPS细胞研究所(CiRA)教授KojiEto,利用生物反应器从iPSC中制造出大量血小板,并开展再生障碍性贫血合并血小板输血顽固性的临床研究。临床试验目的是检测血小板制剂的安全性。单剂量递增研究,输血后随访一年。血小板治疗的过程:采集患者细胞,制备成iPS细胞。接着,再把iPS细胞制备成造血祖细胞,再分化成巨核细胞,并冷冻作为主细胞库,巨核细胞可以长时间储存。最后,由巨核细胞制备血小板。需要注意的是,血小板分离、浓缩和清洗后,需要通过照射根除残留的巨核细胞。
血小板批量制造方法概要-07-
癌症免疫疗法:免疫细胞
近年来,癌症免疫治疗作为手术治疗、化疗(抗癌药物和激素给药)和放疗后的重要治疗选择,越来越到